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Abstract

The maximum Nash social welfare (NSW)—which maxi-
mizes the geometric mean of agents’ utilities—is a funda-
mental solution concept with remarkable fairness and effi-
ciency guarantees. The computational aspects of NSW have
been extensively studied for one-sided preferences where a
set of agents have preferences over a set of resources. Our
work deviates from this trend and studies NSW maximiza-
tion for two-sided preferences, wherein a set of workers and
firms, each having a cardinal valuation function, are matched
with each other. We provide a systematic study of the com-
putational complexity of maximizing NSW for many-to-one
matchings under two-sided preferences. Our main negative
result is that maximizing NSW is NP-hard even in a highly re-
stricted setting where each firm has capacity 2, all valuations
are in the range {0, 1, 2}, and each agent positively values
at most three other agents. In search of positive results, we
develop approximation algorithms as well as parameterized
algorithms in terms of natural parameters such as the number
of workers, the number of firms, and the firms’ capacities. We
also provide algorithms for restricted domains such as sym-
metric binary valuations and bounded degree instances.

Introduction
The problem of matching two sets of agents, with each
side having preferences over the other, has been exten-
sively studied in economics, computer science, and artifi-
cial intelligence (Roth and Sotomayor 1992; Manlove 2013;
Brandt et al. 2016). Such two-sided matching problems have
found several notable real-world applications such as in la-
bor markets (Roth and Peranson 1999), school choice (Ab-
dulkadiroğlu and Sönmez 2003), and online dating plat-
forms (Hitsch, Hortaçsu, and Ariely 2010).

Despite their extensive practical applicability, commonly-
used algorithms for these problems often give rise to
concerns about unfairness. A well-known example is the
deferred-acceptance algorithm, which is known to strongly
favor one side at the expense of the other (Gale and Shapley
1962). Similarly, the matching algorithms used by rideshar-
ing platforms have been found to contribute to the wage gap
between men and women (Cook et al. 2021).
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Figure 1: One-sided (left) and two-sided (right) instances.
For each edge, the number close to a vertex denotes how
much that agent values the other agent. The Nash welfare
maximizing matchings are highlighted via thick edges.

The area of fair division provides a formal mathe-
matical framework for rigorously analyzing fairness con-
cepts (Brams and Taylor 1996; Moulin 2004). The litera-
ture on fair division has focused on one-sided preferences,
wherein a set of agents have preferences over the resources.
A prominent measure of fairness in this context is Nash so-
cial welfare, defined as the geometric mean of agents’ utili-
ties (Nash Jr 1950; Kaneko and Nakamura 1979).

Nash welfare provides a “sweet spot” between the purely
welfarist utilitarian objective and the purely egalitarian
Rawlsian objective. It strikes a balance between the often-
conflicting goals of fairness and economic efficiency, and
enjoys a strong axiomatic support (Moulin 2004; Caragian-
nis et al. 2019). In recent years, the computational aspects of
Nash welfare have gained considerable attention (Cole and
Gkatzelis 2018; Barman, Krishnamurthy, and Vaish 2018a;
Amanatidis et al. 2021; Akrami et al. 2022).

Somewhat surprisingly, Nash welfare has not been stud-
ied for two-sided preferences. Our work aims to address this
gap by proposing a systematic examination of the computa-
tional complexity of maximizing Nash welfare in the two-
sided matching problem.

Summary of Contributions
Our model consists of two disjoint sets of agents: workers
and firms. Each worker has a nonnegative valuation for every
firm and can be matched with at most one firm. Each firm
can be matched with multiple workers (up to its capacity)
and has additive valuations over the workers. The goal is to
find a Nash optimal many-to-one matching, i.e., maximize
the geometric mean of workers’ and firms’ utilities.

Before discussing our results, let us illustrate a key differ-
ence between one-sided and two-sided preferences through
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# firms Capacities Valuations Exact/Approx. Complexity Technique Reference
— 2 Ternary {0, 1, 2} Exact NP-hard Rainbow Matching Theorem 1
2 Equal Identical, symmetric Exact NP-hard Partition Proposition 3

— — Positive 1/√opt Poly time Submodularity Theorem 2
— Constant Positive, constant Constant approx. Poly time Submodularity Corollary 2

Constant — O(poly(m,n)) 1/(1+ε)-approx. Quasipoly time Bucketing Theorem 3
Constant — Constant Exact Poly time Bucketing Corollary 3

— — — Exact FPT, O⋆(3m) Dynamic prog. Theorem 4
— Constant — Exact FPT, O⋆(2m) Dynamic prog. Theorem 5

— — — (1+ε)

−(n+1)
(m+n) -approx. FPT, O⋆(1/ε4 · 2m) Poly. multiplication Theorem 6

— — Symmetric binary Exact Poly time Greedy algorithm Theorem 7
— — — Exact Poly time for deg ≤ 2 Paths and cycles Theorem 8
— Exactly 2 — Exact Poly time for deg ≤ 3 Reduction rules Theorem 8

Table 1: Summary of our results on maximizing Nash welfare with n firms and m workers. Each row lists a result under the
assumptions specified by the individual columns. A “—” means that the parameter for that column can be arbitrary. The red
colored rows contain hardness results, blue rows contain approximation algorithms, and green rows contain exact algorithms.

the example in Figure 1. There are two workers w1, w2

and two firms f1, f2, each with capacity 1. The assignment
{(f1, w1), (f2, w2)} maximizes Nash welfare in the one-
sided instance (ref. left subfigure). But when the workers’
preferences are taken into account (ref. right subfigure), this
assignment turns out to be arbitrarily suboptimal, giving
zero values to all workers and having zero Nash welfare.
Thus, the structure of Nash optimal solutions for two-sided
instances can drastically differ from their one-sided counter-
parts, which makes the two-sided problem challenging.

Table 1 summarizes our results. Some of the technical
highlights of our work are discussed below.

Hardness Results. We show that finding a Nash optimal
matching is NP-hard even when each firm has capacity 2 and
the valuations are ternary in the range {0, 1, 2} (Theorem 1).
This hardness result is “tight” in the sense that further re-
stricting either of these assumptions—firms having unit ca-
pacities or valuations being symmetric and binary {0, 1}—
allows efficient algorithms (Proposition 2 and Theorem 7).

Approximation Algorithms. We provide two approxima-
tion algorithms. The first one is a 1√

opt -approximation al-
gorithm, where opt is the optimal Nash welfare (Theo-
rem 2). This result assumes that the valuations are positive
integers, and uses a reduction to the fair division problem
under submodular valuations and matroid constraints. The
second algorithm uses a discretization technique to give a
quasipolynomial-time approximation scheme (QPTAS) for
a constant number of firms and polynomially-bounded valu-
ations (Theorem 3). Note that the problem is NP-hard even
for two firms (Proposition 3). Whether this hardness impli-
cation can be achieved for polynomially-bounded valuations
remains unresolved.

Parameterized Algorithms. We provide two parameter-
ized algorithms. The first algorithm, based on dynamic pro-
gramming, is fixed-parameter tractable (FPT) in the num-
ber of workers m and has a running time of O⋆(3m) (The-
orem 4); here, the notation O⋆(·) suppresses multiplicative
polynomial terms. The second algorithm is an FPT approxi-

mation scheme with a faster running time of O⋆(2m) (The-
orem 6). This algorithm uses polynomial multiplication; to
our knowledge, this is the first use of this technique in the
context of Nash welfare.

Restricted Domains. Finally, we develop exact,
polynomial-time algorithms for restricted settings such
as symmetric binary valuations (Theorem 7) and bounded
degree instances (Theorem 8). Our algorithm for symmetric
binary valuations uses the greedy algorithm of Barman,
Krishnamurthy, and Vaish (2018b) from fair division for
maximizing Nash welfare under binary valuations.

Related Work
We will now briefly survey the relevant literature on Nash
welfare in fair division. A detailed discussion of the related
work can be found in the full version (Jain and Vaish 2023).

For fair division of divisible resources, the well-known
Eisenberg-Gale convex program is known to efficiently
compute a fractional allocation that maximizes Nash wel-
fare (Eisenberg and Gale 1959). By contrast, for indivisible
resources, the problem becomes APX-hard under additive
valuations (Nguyen et al. 2014; Lee 2017). Note that the fair
division problem for indivisible resources is a special case
of our model when every worker (i.e., the ‘items’) values all
firms (i.e., the ‘agents’) at 1, and the firms have unrestricted
capacities. For the case of restricted capacities, which is the
focus of our study, the hardness constructions from fair divi-
sion do not automatically carry over to our setting (we dis-
cuss some exceptions to this remark in the section on hard-
ness results).

On the algorithmic front, for additive valuations, a fully
polynomial-time approximation scheme (FPTAS) is known
for any fixed number of agents (Nguyen et al. 2014; Garg
et al. 2022), and constant-factor approximation algorithms
are known for a general number of agents (Cole and
Gkatzelis 2018; Cole et al. 2017; Barman, Krishnamurthy,
and Vaish 2018a). Several works have studied approxima-
tion algorithms for more general classes of valuations such
as budget-additive (Garg, Hoefer, and Mehlhorn 2018), sep-
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arable piecewise-linear concave (Anari et al. 2018), sub-
modular (Garg, Kulkarni, and Kulkarni 2020; Garg et al.
2023), XOS (Barman et al. 2021), and subadditive (Barman
et al. 2020; Chaudhury, Garg, and Mehta 2021). For more
details on fair division with indivisible resources, we refer
the reader to the survey by Amanatidis et al. (2023).

Preliminaries
For any positive integer r, let [r] := {1, 2, . . . , r}.

Problem instance. An instance of the two-sided match-
ing problem is given by a tuple ⟨W,F,C,V⟩, where W =
{w1, . . . , wm} is the set of m workers, F = {f1, . . . , fn}
is the set of n firms, C = {c1, . . . , cn} is the set of capac-
ities of the firms, and V = (vw1 , . . . , vwm , vf1 , . . . , vfn) is
the valuation profile consisting of the valuation function of
each worker and firm. For each worker w ∈ W , its valuation
function vw : F ∪ {∅} → N ∪ {0} specifies its numerical
value for each firm, where vw(∅) := 0. For each firm f ∈ F ,
its valuation function vf : 2W → N ∪ {0} specifies its nu-
merical value for each subset of workers, where vf (∅) := 0.

Many-to-one matching. A many-to-one matching µ :
W × F → {0, 1} is a function that assigns each worker-
firm pair a weight of either 0 or 1 such that:

• for every worker w ∈ W ,
∑

f∈F µ(w, f) ≤ 1, i.e., each
worker is matched with at most one firm, and

• for every firm f ∈ F ,
∑

w∈W µ(w, f) ≤ cf , i.e., each
firm f is matched with at most cf workers.

We will write µ(w) to denote the firm that worker w is
matched with under µ, i.e, µ(w) := {f ∈ F : µ(w, f) = 1}.
Similarly, we will write µ(f) to denote the set of workers
that are matched with firm f under µ, i.e., µ(f) := {w ∈
W : µ(w, f) = 1}. Thus, |µ(w)| ≤ 1 and |µ(f)| ≤ cf .

For the special case when cf = 1 for all firms f ∈ F , we
obtain the one-to-one matching problem.

For simplicity, we will use the term matching to denote
a ‘many-to-one matching’, and will explicitly use the qual-
ifiers ‘one-to-one’ and ‘many-to-one’ when the distinction
between the two is necessary. Further, the term agent will
refer to a worker or a firm, i.e., an entity in the set W ∪ F .

Utilities. Given a matching µ, the utility of a worker w
under µ is its value for the firm that it is matched with, i.e.,
uw(µ) :=

∑
f∈F vw,f · µ(w, f). Similarly, the utility of a

firm f under µ is the sum of its values for the workers that
it is matched with, i.e., uf (µ) :=

∑
w∈W vf,w · µ(w, f). In

other words, the firms’ utilities are assumed to be additive.

Welfare measures. We will now define two welfare mea-
sures that can be associated with a matching µ.

• Utilitarian social welfare is the sum of the utilities of the
agents under µ, i.e., Wutil(µ) :=

∑
i∈W∪F ui(µ).

• Nash social welfare is the geometric mean of the utilities
of the agents under µ, i.e.,

WNash(µ) :=

( ∏
i∈W∪F

ui(µ)

)1/n+m

.

We will use the term Nash product to denote the product
of agents’ utilities.

For any α ∈ [0, 1] and any welfare measure W , a match-
ing µ is said to be α-W optimal if its welfare is at least α
times the maximum welfare achieved by any matching for
the given instance. When α = 1, we use the term W opti-
mal, e.g., utilitarian optimal or Nash optimal.

The case of zero Nash welfare. Since we allow the agents
to have zero valuations, it is possible that every matching
for a given instance has zero Nash welfare. In the full ver-
sion (Jain and Vaish 2023), we give a polynomial-time al-
gorithm for identifying such instances. This algorithm uses
a natural linear program for many-to-one matchings along
with the rounding technique of Budish et al. (2013) and Aziz
et al. (2023).

Proposition 1. There is a polynomial-time algorithm that,
given any two-sided matching instance, determines whether
there exists a matching with nonzero Nash welfare.

The ‘zeroness’ of Nash welfare turns out to be important
in analyzing its axiomatic properties in the fair division lit-
erature. Indeed, for an instance where all allocations have
zero Nash welfare, a Nash optimal allocation is defined in
terms of the largest set of agents that can have positive util-
ity (Caragiannis et al. 2019). This refinement is necessary
for demonstrating the approximate envy-freeness property
of a Nash optimal allocation. Since our focus in this work
is on computational—rather than axiomatic—properties, we
will assume that instances where the optimal Nash welfare
is zero are discarded. Thus, in the forthcoming sections, we
will assume that any given instance admits some match-
ing with nonzero Nash welfare. Equivalently, there is some
matching in which all agents have positive utility. Note that
this condition enforces that the number of workers is at most
the total capacity of the firms, i.e., m ≤

∑
f∈F cf .

Fair division as a special case. An important special case
of our two-sided model is the problem of fair division with
indivisible items. An instance of this problem consists of a
set of agents with numerical valuations over a set of indivisi-
ble items. The goal is to partition the items among the agents
subject to fairness constraints, such as finding an allocation
that maximizes Nash welfare. When each worker values ev-
ery firm at 1 and the firms have unrestricted capacities, we
obtain fair division as a special case of our problem.

Relevant parameters. In addition to natural parameters
such as the number of workers, number of firms, and firms’
capacities, we will use other structural parameters in our
analysis. Consider the bipartite graph (similar to the one
shown in Figure 1) associated with any matching instance.
Suppose all “0—0” edges, wherein a worker and firm value
each other at 0, are removed. The degree of an agent is de-
fined as the number of edges incident to the corresponding
vertex in the residual graph. Thus, the degree of an agent
gives an upper bound on the number of other agents that it
positively values. We also consider the number of distinct
valuations parameter, defined as the number of distinct ele-
ments in the set {vw,f}(w,f)∈W×F ∪ {vf,w}(w,f)∈W×F .
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All omitted proofs are in the full version of the paper (Jain
and Vaish 2023).

Hardness Results
In this section, we will prove our main negative result (Theo-
rem 1) concerning the hardness of maximizing Nash welfare
under two-sided preferences.

To motivate our hardness result, let us first consider an
easy case where the capacity of each firm is 1. In this
case, a Nash optimal matching can be computed in polyno-
mial time (Proposition 2). The algorithm is fairly natural: It
computes a maximum weight matching in a bipartite graph
whose vertices are the workers and the firms, and the weight
of the edge between worker w and firm f is log(vw,f · vf,w)
if both vw,f and vf,w are positive, and 0 otherwise.
Proposition 2. When every firm has capacity 1, a Nash op-
timal matching can be computed in polynomial time.

Interestingly, the problem becomes significantly harder
when the firms can have capacity 2 (Theorem 1). On first
thought, it may seem that the hardness arises because of
large valuations. Or, if the valuations are small, the difficulty
may be due to balancing a large number of small values for
each firm. However, we show that the hardness persists even
when all valuations are in the range {0, 1, 2} (also known as
ternary or 3-value instances) and each agent has degree at
most 3; thus, it positively values at most three other agents.
Theorem 1 (NP-hardness under constant capacities).
Computing a Nash optimal matching is NP-complete even
when each firm has capacity 2, all valuations are in
{0, 1, 2}, and each agent has degree at most 3.

Before discussing the proof of Theorem 1, let us com-
pare it with some known results on the hardness of maximiz-
ing Nash welfare in the fair division literature. Amanatidis
et al. (2021) have shown that maximizing Nash welfare is
NP-hard for 3-value instances when all valuations are in the
range {0, 1, a} for some a > 1. The parameter ‘a’ in their
construction depends on the size of the instance; specifically,
they use a > 1/ 2m

√
2− 1, where m is the number of clauses

in the 3-SAT instance which they reduce from. By contrast,
our reduction does not require the values to grow with the
size of the instance; indeed, all valuations in our construc-
tion are in the range {0, 1, 2}.

Nguyen et al. (2014) showed NP-hardness of approx-
imating Nash welfare to within a factor 8

9 via reduction
from EXACT COVER BY THREE SETS (X3C). Their
reduction requires the capacities to be 3 (instead of 2) and
the number of positively valued agents to grow with the
problem size (instead of being constant). Finally, Garg, Hoe-
fer, and Mehlhorn (2018) showed NP-hardness of approxi-
mating Nash welfare to within a factor

√
7/8 via a reduction

from a variant of MAXIMUM LINEAR EQUATION prob-
lem. The capacities in their reduction are required to be 4
(instead of 2) and the valuations are in {0, 1, k} for a large
constant k (even under a conservative calculation, k ≥ 8).

Let us now briefly sketch the proof of Theorem 1.

Proof sketch. (of Theorem 1) Our reduction is from
RAINBOW PERFECT MATCHING. The input to this prob-

Class 1 main firms

...

Class r main firms

r dummy firms Class r dummy workers

...

Class 1 dummy workers

2r main workers

...

...
1 1

1
12

1

2
1

2

1

2

1

Figure 2: The reduced two-sided matching instance in the
proof of Theorem 1. Firms are denoted by squares and work-
ers by circles. The shaded and unshaded nodes denote the
dummy and the main agents, respectively.

lem consists of a bipartite multigraph whose vertex sets are
of size r each and whose edge set is partitioned into r color
classes. The goal is to determine if there is a perfect match-
ing consisting of one edge of each color. In the full version of
the paper (Jain and Vaish 2023), we show that this problem
is NP-hard even when each vertex has degree 3 and there are
three edges of each color. These restrictions on RAINBOW
PERFECT MATCHING are needed in our proof for obtain-
ing the bound on degree in Theorem 1.

The reduced instance consists of a main firm for every
edge and a main worker for every vertex of the given multi-
graph. Additionally, there are three dummy workers and one
dummy firm for each color class. The main workers only
value the main firm corresponding to their incident edges,
while the main firms have a slightly higher value for dummy
workers; see Figure 2. Each dummy firm only values the
dummy workers of the same color class and has zero value
for all other workers. The capacity of every firm is 2, and
the threshold for Nash welfare is θ := 2#firms/#agents. That
is, the goal is to determine if there is a feasible matching
with Nash welfare at least θ. Note that there are 4r firms and
5r workers in the reduced instance; thus 9r agents in total.

Given a rainbow perfect matching, the desired Nash wel-
fare solution can be obtained by assigning the main work-
ers to the firms corresponding to the matched edges. This
leaves two main firms in each color class, who each absorb
one dummy worker, leaving the third dummy worker for a
dummy firm. Thus, all firms get a utility of 2, as desired.

For the reverse direction, we use the AM-GM inequal-
ity. Indeed, each dummy worker contributes 2 to the sum of
firms’ utilities, while each main worker contributes 1. Thus,
the arithmetic mean of firms’ utilities is exactly 2. The de-
cision threshold of θ forces the geometric mean to also be
exactly 2, implying that every firm gets a utility of 2. This
naturally induces a rainbow matching.

By reducing from the PARTITION problem, we can
show NP-hardness of maximizing Nash welfare even for two
firms with identical valuations and equal capacities and even
under symmetric valuations (i.e., if for every worker w and
firm f , vw,f = vf,w). This reduction is well-known in the
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fair division literature; Proposition 3 simply adapts it to two-
sided preferences setting.
Proposition 3 (NP-hardness for two identical firms).
Computing a Nash optimal matching is NP-complete even
with two identical firms (that have the same valuation func-
tions and equal capacities) and under symmetric valuations.

A slight modification of the same reduction gives NP-
hardness for the case when all agents have strict preferences.
Corollary 1 (NP-hardness under strict preferences).
Computing a Nash optimal matching is NP-complete even
when all agents have strict preferences.

Approximation Algorithms
The intractability of maximizing Nash welfare motivates the
study of approximation algorithms in search of positive re-
sults. To this end, we provide two algorithms: The first al-
gorithm works for an arbitrary number of firms, but gives
a somewhat weak approximation (Theorem 2). The second
algorithm provides a stronger approximation for a constant
number of firms (Theorem 3 and Corollary 3).

Our first main result in this section is a 1√
opt -

approximation algorithm, where opt is the optimal Nash
welfare in the given instance. The algorithm requires all val-
uations to be positive, i.e., for every worker w ∈ W and
every firm f ∈ F , vw,f > 0 and vf,w > 0.

Theorem 2 ( 1√
opt -approximation). There is a polynomial-

time algorithm that, given any matching instance with pos-
itive valuations, returns a 1√

opt -Nash optimal matching,
where opt is the optimal Nash welfare.

The approximation factor in Theorem 2 decreases as a
function of the optimal Nash welfare and provides only a
weak guarantee as the problem size grows. Nevertheless,
when the valuations are bounded by a constant and each firm
has a constant capacity, the maximum utility of any agent—
and thus their geometric mean—is also constant. In this set-
ting, Theorem 2 gives a constant-factor approximation.
Corollary 2 (Constant approximation for constant val-
uations and capacities). Let c0 be a constant. There is
a polynomial-time algorithm that, given any matching in-
stance with positive valuations where all valuations and
capacities are bounded by c0, returns an α-Nash optimal
matching for some constant α (that only depends on c0).

Recall that even when all valuations and capacities are
bounded by a constant, the problem of maximizing Nash
welfare is NP-hard (Theorem 1). Whether there exists a
polynomial-time approximation scheme (PTAS) in this set-
ting is an interesting open problem. Later in this section, we
will present a quasipolynomial-time approximation scheme
or QPTAS for a constant number of firms (Theorem 3).

Proof sketch. (of Theorem 2) We will show that the task of
approximating Nash welfare in the matching problem re-
duces to approximating utilitarian welfare in the fair divi-
sion problem under submodular valuations and matroid con-
straints. Specifically, we let the firms and workers play the

role of agents and items, respectively, in the fair division
problem. For each firm f and any subset X ⊆ W of work-
ers, the modified valuation of ‘agent’ f for the set of ‘items’
X is defined as v̂f (X) := log (vf (X) ·Πw∈Xvw,f ).

The modified valuation function v̂f (·) captures the com-
bined contribution of firm f and the set of workers X to
the log of Nash welfare objective. It is easy to show that an
α-utilitarian optimal allocation (under modified valuations)
induces a matching that is 1

opt1−α -Nash optimal.
The key observation is that the function v̂f (·) is submodu-

lar. Furthermore, capacity constraints in the matching prob-
lem can be captured by matroid constraints in the fair di-
vision problem. We can now use the natural greedy algo-
rithm for submodular maximization to obtain a feasible and
1
2 -utilitarian optimal allocation with respect to the modified
valuations (Fisher, Nemhauser, and Wolsey 1978). The de-
sired approximation for Nash welfare follows.

It would be very interesting to know if a constant-factor
approximation algorithm can be designed for our problem.
Such algorithms are known for the one-sided fair division
problem. However, as the example in Figure 1 suggests, in-
corporating the preferences of the ‘items’ can come at the
expense of making the ‘agents’ worse off. This makes the
design of algorithms for the two-sided problem challenging.

Our second main result in this section uses the idea of
bucketing (or discretization) to classify the workers and
firms according to the range in which they value each other.

Specifically, given any ε > 0 and any firm f , define
a set of τ + 1 buckets Bf

0 , B
f
1 , B

f
2 , . . . , B

f
τ , where τ :=

⌈log1+ε vmax⌉ and vmax is the maximum valuation of any
agent for any other agent. For any i ∈ [τ ], the bucket Bf

i de-
notes the set of workers who value firm f between (1+ε)i−1

and (1 + ε)i. Bucket Bf
0 contains workers who value firm f

at 0. For each bucket Bf
i , we further define τ+1 sub-buckets

bf,i0 , bf,i1 , . . . , bf,iτ , where, for any j ∈ [τ ], the sub-bucket bf,ij

denotes the set of workers in the bucket Bf
i whom the firm

f values between (1 + ε)j−1 and (1 + ε)j . The workers in
Bf

i valued at 0 are assigned to bf,i0 . Thus, membership in a
sub-bucket specifies the valuations of a worker and a firm
for each other within a multiplicative factor of (1 + ε).

Our algorithm guesses the number of workers in each sub-
bucket in an optimal solution. Each such guess, if feasible
for the given capacities, induces a matching. The Nash wel-
fare of this matching can be correctly computed to within a
multiplicative factor of (1 + ε) by only knowing the num-
ber of workers in each sub-bucket. The total number of
sub-buckets is O(nτ2). For m workers, the total number of
guesses is at most mO(nτ2); the calculation is analogous to
distributing m identical balls into n(τ + 1)2 bins. For each
guess, the algorithm checks feasibility and computes Nash
welfare in polynomial time. The guess with the maximum
Nash welfare is returned as the solution. For polynomially-
bounded valuations, i.e., when vmax ≤ poly(m,n), we ob-
tain a QPTAS for a constant number of firms.
Theorem 3 (QPTAS for constant no. of firms). There is
an algorithm that, given any ε > 0 and any matching in-
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stance with a constant number of firms and polynomially-
bounded valuations, runs in O(mO( 1

ε2
·log2 m)) time and re-

turns a 1
(1+ε) -Nash optimal matching.

By bucketing on the exact valuations instead of powers of
(1+ε), we obtain a polynomial-time exact algorithm for the
case when n and vmax are both constant.
Corollary 3 (Exact algorithm for constant no. of firms
and constant valuations). There is an algorithm that, given
any matching instance with a constant number of firms and
the maximum valuation vmax bounded by a constant, runs in
O(poly(m)) time and returns a Nash optimal matching.

Note that the problem is NP-hard for a constant number
of firms but with possibly large valuations (Proposition 3).

Parameterized Algorithms
We will now study the problem in the realm of parameter-
ized complexity and discuss two main results: An exact al-
gorithm that is fixed-parameter tractable (FPT) in the num-
ber of workers m with running time O⋆(3m) (Theorem 4),
and a faster FPT approximation algorithm with running time
O⋆(2m) (Theorem 5).

We have already shown that maximizing Nash welfare is
NP-hard even when the maximum capacity of any firm (de-
noted by cap) or the number of firms n is constant. Thus, a
natural next step is to study the combined parameter n+cap.
By the nonzeroness of Nash welfare, we know that m ≤
n · cap. Thus, designing an FPT algorithm in m automati-
cally gives an FPT algorithm in n · cap, and thus also FPT
in n+ cap.

Note that designing some FPT-in-m algorithm is straight-
forward: Since the number of firms is at most the number of
workers (i.e., n ≤ m), a brute force search over the space
of all feasible matchings can be done in O⋆(mm) time. Our
goal in this section is to obtain FPT-in-m algorithms with
significantly better running times.

The following notation will be useful in proving both re-
sults in this section: For any firm f and any subset of work-
ers S ⊆ W , define Wf (S) := vf (S) ·

∏
w∈S vw(f). Recall

that the log of the function Wf (·) was used in the proof of
Theorem 2 in defining the modified valuation function.

Let us now state our first main result in this section.
Theorem 4 (FPT exact algorithm). A Nash optimal match-
ing can be computed in O⋆(3m) time.

To prove Theorem 4, we will use dynamic programming.
Let the firms be indexed as f1, . . . , fn. Define a table T with
n rows (one for each firm) and 2m columns (one for each
subset of workers). The entry T (i, S) will contain the value
of the maximum Nash product achievable in a subinstance
consisting of the first i firms and the subset S of the workers.

More concretely, for every subset S ⊆ W , the first row of
the table can be computed as follows:

T [1, S] =

{
Wf1(S) if |S| ≤ c1,

0 otherwise.

Further, for any i > 1 and any subset S ⊆ W , we have

T [i, S] = max
S′⊆S,|S′|≤ci

Wfi(S
′)× T [i− 1, S \ S′].

Once the entry T [n,W ] is computed correctly, we can use
backtracking to obtain the Nash optimal matching. To com-
pute the entry T [i, S], we may need to check all subsets of
S in the worst case. Thus, the running time of the algorithm
is O(n

∑m
i=0

(
m
i

)
2i), or O(n · 3m).

The running time of our DP algorithm can be improved if
the capacity of each firm is bounded by a constant. In this
case, we only need to consider subsets of constant size, im-
plying that each entry of the table can be computed in poly-
nomial time. Theorem 5 formalizes this observation.

Theorem 5 (O⋆(2m) algorithm for constant capacity).
When every firm has a constant capacity, a Nash optimal
matching can be computed in O⋆(2m) time.

Next, we will present a parameterized approximation al-
gorithm that, given any ε ∈ (0, 1], finds a (1+ε)−(n+1)/m+n-
approximate solution in O⋆(1/ε4 · 2m) time for arbitrary ca-
pacities. The algorithm uses the techniques of polynomial
multiplication and binning.

Given any instance ⟨W,F,C,V⟩, let µ and η denote a
Nash optimal matching and the maximum Nash product, re-
spectively. For every i ∈ [n], let Si denote the set of all
subsets of workers that can be feasibly assigned to the firm
fi, i.e., Si contains all subsets of workers of size at most ci.

The basic idea is as follows: For each firm f ∈ F , guess
Wf (µ(f)), remove the set S from Si if Wf (S) is not same
as the guessed value, and then find n disjoint sets, one from
each Si. The disjoints sets can be found using polynomial
multiplication in O⋆(2m) time. Unfortunately, this will not
lead to the desired running time as guessing depends on the
Nash product. Thus, we will create (1+ε)-sized bins for the
Nash product and obtain an approximation algorithm.

Before we discuss our algorithm, let us introduce some
relevant definitions. The characteristic vector of a subset
S ⊆ [m], denoted by χ(S), is an m-length binary string
whose ith bit is 1 if and only if i ∈ S. Two binary strings of
length m are said to be disjoint if for each i ∈ [m], the ith

bits in the two strings are different. The Hamming weight of
a binary string S, denoted by H(S), is the number of 1s in
the string S. A monomial yi is said to have Hamming weight
w if the degree term i, when represented as a binary string,
has Hamming weight w. The Hamming projection of a poly-
nomial p(y) to h, denoted by Hh(p(y)), is the sum of all
the monomials of p(y) which have Hamming weight h. The
representative polynomial of p(y), denoted by R(p(y)), is a
polynomial derived from p(y) by changing the coefficients
of all monomials contained in it to 1.

We begin with the following known result.

Proposition 4 (Gupta et al. 2021; Cygan and Pilipczuk
2010). Subsets S1, S2 ⊆ W are disjoint if and only if Ham-
ming weight of the monomial xχ(S1)+χ(S2) is |S1| + |S2|.

Let us now state our main result.

Theorem 6 (FPT approximation scheme). There is an al-
gorithm that, given any matching instance and any ε ∈
(0, 1], returns a (1 + ε)−(n+1)/m+n-Nash optimal matching
in O⋆(1/ε4 · 2m) time.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9803



Proof. Let I = ⟨W,F,C,V⟩ be the given instance, where
F = {f1, . . . , fn} and W = {1, . . . ,m} are the sets of
firms and workers, respectively. Let η be the maximum pos-
sible Nash product for I; thus, η ≤ (mvmax)

m+n. Let
Z := {1, (1+ ε), (1+ ε)2, . . . , (1+ ε)q, (1+ ε)q+1}, where
q is the largest positive integer such that (1 + ε)q ≤ η. For
every j ∈ [n], s ∈ [m], and ℓ ∈ Z, we will construct a poly-
nomial pjs,ℓ in which every nonzero monomial corresponds
to an assignment of s workers to the first j firms f1, . . . , fj
such that the Nash product is at least ℓ.

We will construct these polynomials pjs,ℓ iteratively. First,
we will construct a polynomial hj

s,ℓ in which every nonzero
monomial corresponds to an assignment of some set X ⊆
W of s workers to the jth firm fj such that Wfj (X) ≥ ℓ.
That is, for every j ∈ [n], s ∈ [cj ], and ℓ ∈ Z,

hj
s,ℓ :=

∑
X⊆W,|X|=s,
Wfj

(X)≥ℓ

yχ(X). (1)

Define p1s,ℓ := h1
s,ℓ. For every j ∈ {2, . . . , n}, s ∈ [m]

and ℓ ∈ Z, define

pjs,ℓ := R
(
Hs

( ∑
s=s′+s′′,s′≤cj ,

ℓ=ℓ′×ℓ′′,ℓ′,ℓ′′∈Z

hj
s′,ℓ′ × pj−1

s′′,ℓ′′

))
, (2)

where R(·) is the representative polynomial and Hs(·) is the
Hamming projection of weight s. The H(·) operator ensures
disjointness due to Proposition 4. The R(·) operator is only
required for the running time.

We return the largest value of ℓ for which pnm,ℓ is nonzero.
The corresponding matching can be found by backtracking.

To argue correctness, we will prove that if the algorithm
returns ℓ⋆, then η ≤ (1 + ε)n+1ℓ⋆. Towards this, we show
that if (1 + ε)q ≤ η ≤ (1 + ε)q+1, then pnm,ℓ is nonzero
for some ℓ ∈ {(1 + ε)q−n, . . . , (1 + ε)q+1}. Thus, we re-
turn a matching µ̃ with Nash product at least (1 + ε)q−n.
Since, η ≤ (1 + ε)q+1, it follows that η ≤ (1 + ε)n+1ℓ⋆.
Thus, WNash(µ) ≤ (1+ε)

n+1
m+nWNash(µ̃), where µ is a Nash

optimal matching. The detailed proof of correctness can be
found in the full version (Jain and Vaish 2023).

Since |Z| = O(log1+ε η), we compute O(nm log1+ε η)
polynomials. Note that the degree of the polynomial is at
most 2m (as the the m-length binary vector in the polyno-
mial can have all 1s). Each polynomial can be computed in
O(m2 · 2m · log η) time due to the following result and the
fact that s ≤ m and ℓ ∈ Z.

Proposition 5 (Moenck 1976). Two polynomials of degree
d can be multiplied in O(d log d) time.

Since η ≤ (mvmax)
m+n, log1+ε η ≤ (m +

n) log1+ε(mvmax). By changing the base of logarithm from
(1 + ε) to 2, and the fact that log(1 + ε) > ε2/2, for every
ε ∈ (0, 1], we get the running time of O⋆(1/ε4 · 2m).

Restricted Domains
In this section, we will design polynomial-time algorithms
for restricted domains. Our first result is an algorithm for
symmetric binary valuations, which is when, for every
worker-firm pair (w, f) ∈ W × F , either vw,f = vf,w = 1
or vw,f = vf,w = 0.
Theorem 7. For symmetric binary valuations, a Nash opti-
mal matching can be computed in polynomial time.

We use the algorithm of Barman, Krishnamurthy, and
Vaish (2018b) which maximizes Nash welfare in the one-
sided fair division problem under binary valuations. Starting
with a suboptimal allocation, their algorithm greedily picks
a sequence of item transfers between agents to improve the
Nash objective. We follow the same strategy, with the differ-
ence that the initial matching in our case is chosen using the
algorithm in Proposition 1 to ensure nonzero Nash welfare.

Note that for general symmetric valuations, the problem
remains NP-hard (Proposition 3). Whether an efficient algo-
rithm is possible for (possibly asymmetric) binary valuations
is an interesting problem for future work.

We will now discuss bounded degree instances.
Theorem 8. A Nash optimal matching can be computed in
polynomial time when:
1. all agents have degree at most 2,
2. all firms have degree at most 3 and exactly two workers

need to be assigned to every firm,
3. every worker values only one firm positively, and
4. the number of firms and the number of distinct valuations

are constant.
Furthermore, when the number of firms is constant and the
number of distinct valuations is logarithmically bounded in
the input size (i.e., at most log (poly(m,n, vmax))), a Nash
optimal matching can be computed in quasipolynomial time.

The first three results in Theorem 8 provide tractable sub-
cases vis-à-vis the NP-hardness result in Theorem 1 for de-
gree at most 3 and capacity 2. The fourth result is in contrast
with NP-hardness for two firms when the number of distinct
valuations can be large (Proposition 3).

Concluding Remarks
We have initiated a systematic study of the computation of
Nash optimal many-to-one matchings under two-sided pref-
erences. Our work contributes a variety of hardness and al-
gorithmic results, spanning a broad range of techniques in-
cluding polynomial multiplication, submodular fair division,
rainbow perfect matching, etc. (see Table 1).

A number of intriguing open problems remain. Designing
a constant-factor approximation algorithm for our problem
and developing lower bounds in terms of natural parame-
ters are two outstanding questions. Additionally, studying
Nash optimal solutions in conjunction with established solu-
tion concepts such as stability and popularity will also be of
interest (our hardness result in Theorem 1 extends to these
concepts). Finally, analogous to the literature in fair division,
it would be interesting to find axiomatic justification for the
use of Nash welfare in the two-sided setting.
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